a2 United States Patent

Brenneman et al.

US009465656B2

US 9,465,656 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) SCHEDULER PENALTY FOR SWAPPING
ACTIVITY

(75) Inventors: Robert J. Brenneman, Stormville, NY
(US); Eli M. Dow, Poughkeepsie, NY
(US); William J. Huie, Herndon, VA
(US); Sarah J. Sheppard,
Poughkeepsie, NY (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1612 days.

(21) Appl. No.: 12/416,629

(22) Filed: Apr. 1, 2009
(65) Prior Publication Data
US 2010/0257530 Al Oct. 7, 2010
(51) Imt. ClL
GO6F 9/40 (2006.01)
GO6F 9/48 (2006.01)
(52) US. CL
CPC it GO6F 9/4881 (2013.01)
(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,159,678 A 10/1992 Wengelski et al.
5,287,508 A 2/1994 Hejna, Jr. et al.
6,216,109 Bl 4/2001 Zweben et al.
6,978,466 B2* 12/2005 Kerly ...ccooeevvininnccnn 719/332
7,340,328 B2 3/2008 Matheson et al.
2009/0287571 Al* 11/2009 Fujiokaccccevveennne. 705/14.54
i

OTHER PUBLICATIONS

Nikolopoulos; Adaptive scheduling under memory constraints on
non-dedicated computational farms; 2003.*

Pruning-Based, Energy-Optimal, Deterministic I/O Device Sched-
uling for Hard Real-Time Systems, [online]; [retrieved on Mar. 31,
2009] retrieved from the Internet http://www.dtic.mil/cgi-bin/
GetTRDoc? AD=ADA440911&Location=U2&doc=GetTRDoc.
pdf.

Hardware-Modulated Parallelism in Chip Microprocessors,
[online]; [retrieved on Mar. 31, 2009]; retrieved form the Internet
http://www.princeton.edu/~peh/publications/ndp_ dasCMP.pdf.
Lee et al., ‘Precise and Realistic Utility Functions for User-Centric
Performance Analysis of Schedulers’, HDPC 07, Jun. 25-29, 2007,
Monterey, California, USA. pp. 107-116.

Reddy et al., ‘Disk Scheduling in a Multimedia I/O System’, ACM
Transactions on Multimedia Computing, Communications and
Applications, vol. 1, No. 1, Feb. 2005, pp. 37-59.

IBM, ‘A ‘Sleep on Watermark’ Method for Managing Virtual
Memory Overcommits Via’, IPcom Electronic Publication
IPCOMO000175777D, Oct. 24, 2008.

* cited by examiner

Primary Examiner — Corey S Faherty
(74) Attorney, Agent, or Firm — Cantor Colburn LLP;
Steven Chiu

(57) ABSTRACT

Methods, systems and computer program products for
scheduler penalty for swapping activity. Exemplary embodi-
ments include a memory management method, including
identifying a first process from an active queue, identifying
a second process from the active queue, tracking attributes
associated with the first and second processes, determining
whether at least one of the first and second processes are
constraining system memory and penalizing at least one of
the first and second processes in response to at least one of
the first and second processes constraining the system
memory.

20 Claims, 3 Drawing Sheets

START

MONITORMEMORY | ~205
USAGE

HAS MEMORY
USAGE BECOME
CONSTRAINED?

DETERMINE WHICH
PROCESS IS

|~215

CONSTRAINQIG MEMORY

MEASURE SWAPFING | ~220
ACTMITY OF THE PROCESS

PENALIZE THE PROCESS |28

STOP

US 9,465,656 B2

Sheet 1 of 3

Oct. 11, 2016

U.S. Patent

—

051~
b F N: 09
=5 Y \ _\

B mmjoEzS mmgaxuw JOVILNI
I (ot g1 n0/ndN W3LSAS | “YMOMLIN
IAdIn0
/ MITIONINOD 40l
0bl -1 AONIN - 39VH0LS

| MITIONINGO ol
-1 AYIdSIC 8035304
\ \
0l S0
0%l \

U.S. Patent

200

Oct. 11, 2016

C SIART D
¥

Sheet 2 of 3

MONITOR MEMORY
USAGE

HAS MEMORY
USAGE BECOME

DETERMINE WHICH
PROCESS IS
CONSTRAINING MEMORY

215

Y

MEASURE SWAPPING
ACTIVITY OF THE PROCESS

_~220

Y

PENALIZE THE PROCESS

225

C STBP D)
FIG. 2

US 9,465,656 B2

US 9,465,656 B2

Sheet 3 of 3

Oct. 11, 2016

U.S. Patent

(QIZIVNId MOV L
REN

C s

30018 3N
404

1/54d ONIINNOD

0016 INILaaLvNoIsIa | U

YSVL NNY

¢ Old
INTYA JINSS 135
ANV 3N3ND ALIWNIAA NI F1dILINA NOILYZITYNAd
o= 11 0L ¥3INIOd > JHL AG®IILS
ONILYIMO A8 H3IAN3440 H3INNOD INFWFYONE - gt
dVMS SY MSYL YUY

IIMVNYILYM < Y

J911S INILSHd NIRRT [

40 ¥3GNNN S| 3HL OLASVL IAOW N e

{ALdINT MON
3N3N0 JAILIY Sl

AN3ND ALTYNId FHL NI 006
MSVLHOV3 404 43LINNCO |-~
dI¥S$ 3HL 3VRI3a

!

&

GlE
v /
AN3N0 ALLIY NI
ASYL IXIN NIVLEO
2 i
, 0€
o
JAILIY $300 HORNY

30118 FNIL TYNIDRO
0L 30NS AL
13SANY0OL

WN03 SI dINSS HOHM
NI 3N3ND ALTYNd FHL

P

NOHd SYSYL ANV 3AONTY

—C

s)

US 9,465,656 B2

1

SCHEDULER PENALTY FOR SWAPPING
ACTIVITY

BACKGROUND

The present invention relates to task scheduling, and more
specifically, to methods, systems and computer program
products for determining penalization for swapping activity.

Operating systems currently have difficulties dealing with
“out of memory” conditions, or in situations when memory
limitations are approached. For example if a first process
consumes a substantial amount of real memory, and then a
second process then consumers a substantial amount of
memory, both processes can access swap space on a storage
medium (e.g., the hard disk of the computer). When this
event occurs, much of the processing time is spent moving
process in and out of RAM and it is difficult to run any other
tasks, and the system slows to a crawl. For example, the
system scheduler can initiate fair share scheduling in which
the processes are run sequentially, taking turns accessing the
swap area of the storage medium. However, this scheduling
can degrade and slow down system performance. As such,
there doesn’t currently exist many peaceful ways to achieve
system stability.

SUMMARY

Exemplary embodiments include a memory management
method, including identifying a first process from an active
queue, identifying a second process from the active queue,
tracking attributes associated with the first and second
processes, determining whether at least one of the first and
second processes are constraining system memory and
penalizing, with respect to interactivity, at least one of the
first and second processes in response to at least one of the
first and second processes constraining the system memory.

Exemplary embodiments further include a memory man-
agement system including a processor, a memory opera-
tively coupled to the processor, an active queue residing in
the memory, the active queue including processes configure
to be run by the processor and to access the memory, an
expired queue residing in the memory and a penalty queue
residing in the memory.

Exemplary embodiments further include a computer pro-
gram product for providing memory management, the com-
puter program product including instructions for causing a
computer to implement a method, the method including
identifying a first process from an active queue, identifying
a second process from the active queue, tracking attributes
associated with the first and second processes, determining
whether at least one of the first and second processes are
constraining system memory and penalizing at least one of
the first and second processes in response to at least one of
the first and second processes constraining the system
memory by altering the offending process execution pat-
terns.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein
and are considered a part of the claimed invention. For a
better understanding of the invention with the advantages
and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims

10

15

20

25

30

35

40

45

50

55

60

65

2

at the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 illustrates an exemplary embodiment of a system
for implementing scheduler penalization for swapping activ-
ity;

FIG. 2 illustrates a flow chart for a swapping activity
scheduling penalization method in accordance with exem-
plary embodiments; and

FIG. 3 illustrates a flow chart for a swapping activity
penalization management method in accordance with exem-
plary embodiments.

DETAILED DESCRIPTION

In exemplary embodiments, the methods, systems and
computer program products described herein modify an
operating system scheduler to penalize processes that
require large amounts of memory that must be backed by a
slower form of storage in the storage hierarchy (for instance
solid disk storage on many commodity computing devices),
many of which may be persistent. In exemplary embodi-
ments, the methods, systems and computer program prod-
ucts described herein mitigate the rapid oscillations, which
can occur between accessing real memory and memory
backed by slower forms of persistent storage. In addition,
although some disk space is designated exclusively for
“swap space” there is likely further available space on the
disk. In exemplary embodiments, the operating system can
be extended to “freeze” processes to the disk and “thaw”
them when real memory is available.

FIG. 1 illustrates an exemplary embodiment of a system
100 for implementing scheduler penalization for swapping
activity. The methods described herein can be implemented
in software (e.g., firmware), hardware, or a combination
thereof. In exemplary embodiments, the methods described
herein are implemented in software, as an executable pro-
gram, and is executed by a special or general-purpose digital
computer, such as a personal computer, workstation, mini-
computer, or mainframe computer. The system 100 therefore
includes general-purpose computer 101.

In exemplary embodiments, in terms of hardware archi-
tecture, as shown in FIG. 1, the computer 101 includes a
processor 105, memory 110 coupled to a memory controller
115, and one or more input and/or output (I/0) devices 140,
145 (or peripherals) that are communicatively coupled via a
local input/output controller 135. The input/output controller
135 can be, for example but not limited to, one or more buses
or other wired or wireless connections, as is known in the
art. The input/output controller 135 may have additional
elements, which are omitted for simplicity, such as control-
lers, buffers (caches), drivers, repeaters, and receivers, to
enable communications. Further, the local interface may
include address, control, and/or data connections to enable
appropriate communications among the aforementioned
components.

The processor 105 is a hardware device for executing
software, particularly that stored in memory 110. The pro-
cessor 105 can be any custom made or commercially avail-
able processor, a central processing unit (CPU), an auxiliary
processor among several processors associated with the
computer 101, a semiconductor based microprocessor (in
the form of a microchip or chip set), a macroprocessor, or
generally any device for executing software instructions.

The memory 110 can include any one or combination of
volatile memory elements (e.g., random access memory

US 9,465,656 B2

3

(RAM, such as DRAM, SRAM, SDRAM, etc.)) and non-
volatile memory elements (e.g., ROM, erasable program-
mable read only memory (EPROM), electronically erasable
programmable read only memory (EEPROM), program-
mable read only memory (PROM), tape, compact disc read
only memory (CD-ROM), disk, diskette, cartridge, cassette
or the like, etc.). Moreover, the memory 110 may incorpo-
rate electronic, magnetic, optical, and/or other types of
storage media. Note that the memory 110 can have a
distributed architecture, where various components are situ-
ated remote from one another, but can be accessed by the
processor 105.

The software in memory 110 may include one or more
separate programs, each of which comprises an ordered
listing of executable instructions for implementing logical
functions. In the example of FIG. 1, the software in the
memory 110 includes the swapping activity penalization
methods described herein in accordance with exemplary
embodiments and a suitable operating system (OS) 111. The
operating system 111 essentially controls the execution of
other computer programs, such the swapping activity penal-
ization systems and methods described herein, and provides
scheduling, input-output control, file and data management,
memory management, and communication control and
related services. As such, the memory 110 can further
include a system scheduler 112 configured to initiate and
control schedules for processes in the memory 110 and to
initiate penalization for those processes in the memory 110
that consume too much memory and have become
“swappy”’.

The swapping activity penalization methods described
herein may be in the form of a source program, executable
program (object code), script, or any other entity comprising
a set of instructions to be performed. When a source pro-
gram, then the program needs to be translated via a compiler,
assembler, interpreter, or the like, which may or may not be
included within the memory 110, so as to operate properly
in connection with the OS 111. Furthermore, the swapping
activity penalization methods can be written as an object
oriented programming language, which has classes of data
and methods, or a procedure programming language, which
has routines, subroutines, and/or functions.

In exemplary embodiments, a conventional keyboard 150
and mouse 155 can be coupled to the input/output controller
135. Other output devices such as the I/O devices 140, 145
may include input devices, for example but not limited to a
printer, a scanner, microphone, and the like. Finally, the I/O
devices 140, 145 may further include devices that commu-
nicate both inputs and outputs, for instance but not limited
to, a network interface card (NIC) or modulator/demodula-
tor (for accessing other files, devices, systems, or a net-
work), a radio frequency (RF) or other transceiver, a tel-
ephonic interface, a bridge, a router, and the like. The system
100 can further include a display controller 125 coupled to
a display 130. In exemplary embodiments, the system 100
can further include a network interface 160 for coupling to
a network 165. The network 165 can be an IP-based network
for communication between the computer 101 and any
external server, client and the like via a broadband connec-
tion. The network 165 transmits and receives data between
the computer 101 and external systems. In exemplary
embodiments, network 165 can be a managed IP network
administered by a service provider. The network 165 may be
implemented in a wireless fashion, e.g., using wireless
protocols and technologies, such as WiFi, WiMax, etc. The
network 165 can also be a packet-switched network such as
a local area network, wide area network, metropolitan area

20

25

30

40

45

55

4

network, Internet network, or other similar type of network
environment. The network 165 may be a fixed wireless
network, a wireless local area network (LAN), a wireless
wide area network (WAN) a personal area network (PAN),
a virtual private network (VPN), intranet or other suitable
network system and includes equipment for receiving and
transmitting signals.

If the computer 101 is a PC, workstation, intelligent
device or the like, the software in the memory 110 may
further include a basic input output system (BIOS) (omitted
for simplicity). The BIOS is a set of essential software
routines that initialize and test hardware at startup, start the
OS 111, and support the transfer of data among the hardware
devices. The BIOS is stored in ROM so that the BIOS can
be executed when the computer 101 is activated.

When the computer 101 is in operation, the processor 105
is configured to execute software stored within the memory
110, to communicate data to and from the memory 110, and
to generally control operations of the computer 101 pursuant
to the software. The swapping activity penalization methods
described herein and the OS 111, in whole or in part, but
typically the latter, are read by the processor 105, perhaps
buffered within the processor 105, and then executed.

When the systems and methods described herein are
implemented in software, as is shown in FIG. 1, it the
methods can be stored on any computer readable medium,
such as storage 120, for use by or in connection with any
computer related system or method. In the context of this
document, a computer readable medium is an electronic,
magnetic, optical, or other physical device or means that can
contain or store a computer program for use by or in
connection with a computer related system or method. The
swapping activity penalization methods described herein
can be embodied in any computer-readable medium for use
by or in connection with an instruction execution system,
apparatus, or device, such as a computer-based system,
processor-containing system, or other system that can fetch
the instructions from the instruction execution system, appa-
ratus, or device and execute the instructions. In exemplary
embodiments, a “computer-readable medium” can be any
means that can store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device. The computer read-
able medium can be, for example but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, device, or propagation
medium. More specific examples (a non-exhaustive list) of
the computer-readable medium would include the follow-
ing: an electrical connection (electronic) having one or more
wires, a portable computer diskette (magnetic), a random
access memory (RAM) (electronic), a read-only memory
(ROM) (electronic), an erasable programmable read-only
memory (EPROM, EEPROM, or Flash memory) (elec-
tronic), an optical fiber (optical), and a portable compact
disc read-only memory (CDROM) (optical). Note that the
computer-readable medium could even be paper or another
suitable medium upon which the program is printed, as the
program can be electronically captured, via for instance
optical scanning of the paper or other medium, then com-
piled, interpreted or otherwise processed in a suitable man-
ner if necessary, and then stored in a computer memory.

In exemplary embodiments, where the swapping activity
penalization methods are implemented in hardware, the
swapping activity penalization methods described herein
can implemented with any or a combination of the following
technologies, which are each well known in the art: a
discrete logic circuit(s) having logic gates for implementing

US 9,465,656 B2

5

logic functions upon data signals, an application specific
integrated circuit (ASIC) having appropriate combinational
logic gates, a programmable gate array(s) (PGA), a field
programmable gate array (FPGA), etc.

As described above, by modifying the system scheduler
112 to penalize processes, which are “swappy” in nature (i.e.
which require sufficient amounts of memory as to cause
contention in the system to resort to backing the memory
onto disk storage) the emergent behavior of the system 100
mitigates the rapid oscillations, which can occur in a “swap
storm”. In addition although some disk space is typically
designated exclusively for “swap space” (such as in the
storage 120) there is likely further available space. As such,
the methods, systems and computer program products
described herein can track the swapping behavior of pro-
cesses, such as by tracking the number of page faults per
time slice as described further herein. Rather than killing the
process a performed conventionally by operating systems,
the methods, systems and computer products described
herein penalize the process, thereby creating a peaceful
manner in achieving system stability. In addition, the oper-
ating system 111 can be extended to “freeze” processes to
this disk and “thaw” them when real memory is available.

The operating system 111 includes multiple metrics for
determining the order in which to run processes. Such
metrics include but are not limited to historical usage of the
process, type of usage, priority of the usage and “niceness”
of the usage. As described herein, the system scheduler 112
implements these metrics in order to determine how the
processes are scheduled. In exemplary embodiments, the
methods, systems and computer program products described
herein extend the system scheduler metrics to react to the
overall memory requirements of a process relative to the
available storage that is available for swapping. As such, the
system scheduler 112 determines how much of a given
process must be swapped in and out of the storage medium
in order for the process to execute. The processes that are
using more than a predetermined amount of memory and are
utilizing system resources beyond a pre-determined thresh-
old are penalized. Penalizing the aforementioned of pro-
cesses results in the processes having less execution time
and prevents the memory 110 from being overrun as rapidly
by the processes as before the initiation of the penalization.

In further exemplary embodiments, an operator of the
system 100 can be given the option to “freeze” these
processes and write them to a file system (e.g., to the storage
120) even if the area on the storage 120 (e.g., disk space) is
not explicitly designated for such a purpose. This option
allows an administrator the flexibility to temporarily manage
the culprit processes while not forcing the administrator to
explicitly designate disk resources. It is appreciated that this
option can prevent the processes from seeing even more
memory, which can result in those processes over-utilizing
the new resource. Once the system 100 has become more
stable, the system administrator can then have the option to
thaw the processes from the designated storage space and
allow the processes to run as prior to the freezing.

In exemplary embodiments, through the dampening effect
of penalizing swap-heavy processes as described herein,
which slows down the swapping that can cause a swap
storm, the scheduler can devote time to processes that are
not swapping, such as shells and utilities used to potentially
kill the offending swappers. It is appreciated that during a
swap storm, there may not exist sufficient system resources
to launch the shells and utilities to kill the offending pro-
cesses, yet this scenario may be overcome by requiring
certain pages backing the processes that operate on the swap

10

15

20

25

30

35

40

45

50

55

60

65

6

intensive processes to be pinned and locked into memory
such that they will themselves never be a participant in a
swap storm, thus ensuring their continued availability at run
time even under swap storm circumstances. In further exem-
plary embodiments, processes are marked with a swap
penalty. As the processes are marked with the swap penalty,
a lifetime swap score can be kept such that processes can be
frozen automatically when their respective swapiness is too
high as further described herein.

FIG. 2 illustrates a flow chart for a swapping activity
penalization method 200 in accordance with exemplary
embodiments. In exemplary embodiments, at block 205, the
OS 111 monitors memory usage of the system 100. At block
210, the OS 111 determines whether or not the memory 110
has become constrained. If the memory 110 has not become
constrained, then the OS 111 continues to monitor memory
usage at block 205. However, if the OS 111 has determined
that the memory 110 has become constrained at block 210,
the OS 111 determines which processes are the culprits using
existing heuristics and mechanisms at block 215. It is
appreciated that currently, if a process is constraining
memory, the operating system simply kills the process
without any elegant memory freeing resolution. At block
220, once the OS 111 has identified the process that is
constraining the memory 110, the system 100 measures and
quantifies the process’s swapping activity with existing
heuristics at block 220. The swapping activity is given a
value which is then used as a variable in scheduling algo-
rithms. In exemplary embodiments, the system 100 can
reduce the process’s priority and time given to run, which is
one form of penalization at block 225. In exemplary embodi-
ments, if the memory constraint problem is not resolved
after penalization of the offensive process(es), the user can
then use another program to make a decision about how they
want to handle these processes (e.g., either kill or freeze
them and make their own priority calls).

In exemplary embodiments, to determine the penalization
for a process, several structures can be set up in the memory
110 so that the system scheduler 112 can make determina-
tions on when and how to penalize a process. In tracking the
swapping activity and attributes of the process, the OS 111
can set up an object (i.e., data structure) in the memory 110
that stores the attributes of the process. As such, each task is
represented as an object called a task_struct as is common in
the literature. This object typically has attributes of the
process like priority, time slice, process ID number, state,
name, parent process (if any), and children (if any). For
illustrative purposes the data structure is referred to as
task_struct. In exemplary embodiments, the number of page
faults/time slice (PFs/TimeSlice) can be tracked by a counter
stored in task_struct, referred to as $PFPT for illustrative
purposes. In addition, a watermark or threshold can be set at
an unacceptable value for PFs/TimeSlice, which may be
system global variable. In exemplary embodiments, an
instance of this value is associated with any given process
and stored in the respective task_struct for the process. In
exemplary embodiments, a counter for how many consecu-
tive times slices a process should be executed when it is
finally granted permission to run can further be stored in the
memory 110. For illustrative purposes this counter is
referred to as $Tick. In exemplary embodiments, the system
100 can further set up a penalty queue in the memory 110,
which holds pointer to task_structs of offensive processes. In
exemplary embodiments, the memory 110 can further
include a counter for how many times a task should be
skipped (i.e., penalized). This counter is stored in the
memory 110 along with a pointer to the task_struct of the

US 9,465,656 B2

7

offending process, which are both contained in the penalty
queue. For illustrative purposes, this counter is referred to as
$Skip. In exemplary embodiments, the task_struct for each
process can further include a limit on what the maximum
time slice for a process can be. In exemplary embodiments,
the tasks (processes) that are actively accessing memory are
stored in an active queue in the memory 110. In exemplary
embodiments, an expired queue holds the tasks that have
been executed before some other process in the active queue
which has not yet been run but is eligible.

FIG. 3 illustrates a flow chart for a swapping activity
penalization management method 300 in accordance with
exemplary embodiments. It is appreciated that the method
300 is an example and that there are other methods for
managing swapping activity penalization contemplated in
other embodiments. The active queue holds all the upcoming
tasks that have not been processed in a given iteration of
processing through the active task lists (i.e., the list of
processes eligible to run before other processes may run a
second consecutive time). At block 305, the system 100
launches the system scheduler 112. At block 310, the system
scheduler 112 determines if the active queue has tasks in it.
If the active queue does have tasks in it at block 310, then
at block 315, the system scheduler 112 obtains the next task
in the active queue. At block 320, the system scheduler 112
determines if the penalty queue has more than one task in it.
If there is not more than one task in, the system 100 runs the
task for the designated time slice and counts the page faults
per time slice at block 330. If at block 320, the penalty queue
does have more than one task in it, then at block 325, the
system scheduler 112 determines if the task is penalized. If
the task is not penalized that block 325, then the system 100
runs the task for the designated time slice and counts the
page faults per time slice at block 330. If at block 325, the
task is penalized, then the task is moved to the expired queue
at block 350.

Returning to block 330, when the task is run for the
designated time slice and the page faults per time slice are
counted, then at block 335, the system scheduler determines
if the number of page faults per time slice is greater than the
predetermined watermark. If the number of page faults per
time slice is greater than the predetermined watermark at
block 335, then at block 340, the task is marked as a swap
offender by creating a pointer to that task in the penalty
queue. At block 345, the counter $Tick (which represents the
number of consecutive time slices to occupy when this
process is next allowed to run) is incremented by a value
suitable for fine tuning operating behavior (a value such as
1 is the reasonable minimum) but more advanced calcula-
tions based on previous penalization may be taken into
consideration to change the weighting multiple. It should be
appreciated that such a multiple is likely to be artificially
capped in order to deter an errant process from accumulating
enough execution credits ($TICK) to effective starve other
processes by performing unusually long execution that
degrades system performance to a degenerate batch opera-
tion. This same multiple value is set for the $SKIP value of
the process, which indicates the number of consecutive
times the process should be skipped when it would other-
wise normally be eligible and chosen for execution. The task
is then moved to the expired queue at block 350. If the
number of page faults per time slice is not greater than the
predetermined watermark at block 335, then the task is
moved to the expired queue at block 350.

The system scheduler 112 then determines if the active
queue is empty at block 355. If the active queue is not empty
at block 355, then the system 100 obtains the next task in the

10

15

20

25

30

35

40

45

50

55

60

65

8

active queue at block 315 and the subsequent blocks are
repeated. If the active queue is empty at block 355, then at
block 360, the system scheduler 112 decreases the $Skip
counter by 1 for each task in the penalty queue. At block 365,
the system scheduler 112 removed any tasks from the
penalty queue in which $Skip (which indicates the number
of consecutive times the process should be skipped when it
would otherwise normally be eligible and chosen for execu-
tion) is equal to 0. The formerly offending process is now
eligible for execution when it is next encountered in the
active list. After execution has commenced for $Tick num-
ber of consecutive scheduler time slices, the system sched-
uler sets the time slice to the product of $Tick and the system
default time slice When the active queue is empty, the
expired queue becomes the active queue and vice versa. The
method then continues at block 315 in which the system 100
then obtained the next task in the active queue (formerly the
expired queue). It is appreciated that the method 300 con-
tinues indefinitely monitoring and managing processes as
described herein. It is appreciated that there is a check for
more than one task in the penalty queue because two
processes contending for memory cause a swap storm. In
exemplary embodiments, $Tick is set to one and $Skip is set
to zero.

It is therefore appreciate that the method 300 determines
if more than one task is contending for RAM. This deter-
mination occurs each time after the active and expired
queues are swapped. Furthermore, the determination is made
by checking if there is more than one pointer to a task in the
penalty queue. When there are two or more tasks that are
using large amounts of memory, they end up bumping out
the other tasks from RAM onto disk storage. When this
event occurs, then the system 100 knows that a swap storm
is occurring. For example, the system 100 may have a total
of' 2 GB of RAM. Tasks A and B each require 1.5 GB. Task
A has the first chance to run and uses its 1.5 GB. Task B then
runs and it has to swap out 1 GB of A’s memory out to disk
and retrieves its pages. Each time B has to go out to disk, the
page fault counter is incremented. In exemplary embodi-
ments, the method 300 is implemented and the comparison
of page faults/time slice is made. Task B would be marked
as an offender, and tagged in the penalty queue. Then when
Task A runs again, Task A would run into the same problem
that Task B ran into, because it now has to swap out Task B’s
memory, and retrieve it’s own from disk storage. Now A is
marked as an offender as well. In exemplary embodiments,
now that there are two tasks in the penalty queue, the method
300 gives each task more consecutive time to run, but
holding off on how often it runs. In exemplary embodiments,
one effect of the penalization is that the interactivity of the
task is reduced in which the offending task is run more
continuously thereby reducing the interactivity of a user
with the task.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, element components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,

US 9,465,656 B2

9

or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated

The flow diagrams depicted herein are just one example.
There may be many variations to this diagram or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be
performed in a differing order or steps may be added, deleted
or modified. All of these variations are considered a part of
the claimed invention.

While the preferred embodiment to the invention had
been described, it will be understood that those skilled in the
art, both now and in the future, may make various improve-
ments and enhancements which fall within the scope of the
claims which follow. These claims should be construed to
maintain the proper protection for the invention first
described.

What is claimed is:

1. A memory management method, comprising:

identifying a first process from an active queue;

identifying a second process from the active queue;

tracking attributes associated with the first and second
processes, the attributes comprising at least one of
priority, time slice, process ID number, state, name,
parent process, and child process;
determining, by a scheduler of an operating system,
whether one of the first and second processes is con-
straining system memory, the system memory deter-
mined to be constrained if the one of the first and
second processes uses greater than a pre-determined
amount of memory or utilizes system resources beyond
a predetermined threshold value;

marking, by the scheduler, the one of the first and second
processes as a penalized process in response to deter-
mining that the one of the first and second processes
constrains the system memory, the scheduler config-
ured to perform one of a plurality of actions with
respect to the penalized process, the actions comprising
writing the penalized process to a separate temporary
storage location and reducing a scheduling priority
associated with the penalized process, wherein one of
the plurality of actions is selected as a function of the
tracked attributes of the one of the first and second
processes; and

running the other of the first and second processes;

wherein upon determining, responsive to performing the

one of the plurality of actions, the penalized process
continues to constrain the system memory, freezing the
penalized process until memory becomes available or
ending the penalized process.

2. The method as claimed in claim 1 further comprising
measuring the swapping activity of the first and second
processes.

3. The method as claimed in claim 1 wherein the one of
the first and second processes is marked as the penalized
process when the one of the first and second processes

10

20

25

30

35

40

45

50

55

60

10

experiences a number of page faults that exceeds a prede-
termined threshold in a given time period.

4. The method as claimed in claim 3 further comprising
marking the one of the first and second processes as an
expired process.

5. The method as claimed in claim 1 wherein running the
other of the one of the first and second processes is per-
formed upon determining the other of the one of the first and
second processes is not marked as the penalized process.

6. A computer program product for providing memory
management, the computer program product including a
storage media for storing instructions for causing a computer
to implement a method, the method comprising:

identifying a first process from an active queue;

identifying a second process from the active queue;

tracking attributes associated with the first and second
processes, the attributes comprising at least one of
priority, time slice, process 1D number, state, name,
parent process, and child process;
determining, by a scheduler of an operating system,
whether one of the first and second processes is con-
straining system memory, the system memory deter-
mined to be constrained if the one of the first and
second processes uses greater than a pre-determined
amount of memory or utilizes system resources beyond
a predetermined threshold value; and

marking, by the scheduler, the one of the first and second
processes as a penalized process in response to deter-
mining that the one of the first and second processes
constrains the system memory, the scheduler config-
ured to perform one of a plurality of actions with
respect to the penalized process, the actions comprising
writing the penalized process to a separate temporary
storage location and reducing a scheduling priority
associated with the penalized process, wherein one of
the plurality of actions is selected as a function of the
tracked attributes of the one of the first and second
processes; and

running the other of the first and second processes;

wherein upon determining, responsive to performing the

one of the plurality of actions, the penalized process
continues to constrain the system memory, freezing the
penalized process until memory becomes available or
ending the penalized process.

7. The computer program product as claimed in claim 6
wherein the method further comprises measuring the swap-
ping activity of the first and second processes.

8. The computer program product as claimed in claim 6
wherein the one of the first and second processes is marked
as the penalized process when the one of the first and second
processes experiences a number of page faults that exceeds
a predetermined threshold in a given time period.

9. The computer program product as claimed in claim 8
wherein the method further comprises marking the one of
the first and second processes as an expired process.

10. The computer program product as claimed in claim 6
wherein the running the other of the one of the first and
second processes is performed upon determining the other of
the one of the first and second processes is not marked as the
penalized process.

11. The method as claimed in claim 1 further comprising
scheduling an order to run the first and second processes
based on historical usage, type of usage, and priority of
usage.

12. The method as claimed in claim 1 further comprising
devoting time to at least one of a shell and a utility that is not

US 9,465,656 B2

11

swapping, wherein the at least one of a shell and a utility is
used to kill an offending swap process.

13. The method as claimed in claim 12 further comprising
pinning and locking into the system memory a page asso-
ciated with the at least one of a shell and a utility to ensure
an availability of the at least one of a shell and a utility.

14. The computer program product as claimed in claim 6
wherein the method further comprises scheduling an order to
run the first and second processes based on historical usage,
type of usage, and priority of usage.

15. The computer program product as claimed in claim 6
wherein the method further comprises devoting time to at
least one of a shell and a utility that is not swapping, wherein
the at least one of a shell and a utility is used to kill an
offending swap process.

16. The computer program product as claimed in claim 15
wherein the method further comprises pinning and locking
into the system memory a page associated with the at least
one of a shell and a utility to ensure an availability of the at
least one of a shell and a utility.

10

15

12

17. The method as claimed in claim 1, wherein penalizing
the one of the first and second processes comprises running
the one of the first and second processes in a continuous
mode such that the one of the first and second processes runs
consecutively in time with respect to the other of the first and
second processes.

18. The method as claimed in claim 17 wherein the
continuous mode limits interactivity from a user.

19. The computer program product as claimed in claim 6
wherein penalizing the one of the first and second processes
comprises running the one of the first and second processes
in a continuous mode such that the one of the first and
second processes runs consecutively in time with respect to
the other of the first and second processes.

20. The computer program product as claimed in claim 19
wherein the continuous mode limits interactivity from a
user.

